338 research outputs found

    Optical properties and Raman scattering of vanadium ladder compounds

    Full text link
    We investigate electronic and optical properties of the V-based ladder compounds NaV2O5, the iso-structural CaV2O5, as well as MgV2O5, which differs from NaV2O5 and CaV2O5 in the c axis stacking. We calculate ab initio the A_g phonon modes in these compounds as a basis for the investigation of the electron-phonon and spin-phonon coupling. The phonon modes together with the dielectric tensors as a function of the corresponding ion displacements are the starting point for the calculation of the A_g Raman scattering.Comment: 4 pages, 5 figures, .bbl file with references included. Accepted for publication in Physica Script

    Linear and Second-order Optical Response from First Principles

    Full text link
    We present a full formalism for the calculation of the linear and second-order optical response for semiconductors and insulators. The expressions for the optical susceptibilities are derived within perturbation theory. As a starting point a brief background of the single and many particle Hamiltonians and operators is provided. As an example we report calculations of the linear and nonlinear optical properties of the mono-layer InP/GaP (110) superlattice. The features in the linear optical spectra are identified to be coming from various band combinations. The main features in the second-order optical spectra are analyzed in terms of resonances of peaks in linear optical spectra. With the help of the strain corrected effective-medium-model the interface selectivity of the second-order optical properties is highlighted.Comment: 10 pages 4 figures, conference & physica script

    All-electron Exact Exchange Treatment of Semiconductors: Effect of Core-valence Interaction on Band-gap and dd-band Position

    Full text link
    Exact exchange (EXX) Kohn-Sham calculations within an all-electron full-potential method are performed on a range of semiconductors and insulators (Ge, GaAs, CdS, Si, ZnS, C, BN, Ne, Ar, Kr and Xe). We find that the band-gaps are not as close to experiment as those obtained from previous pseudopotential EXX calculations. Full-potential band-gaps are also not significantly better for spsp semiconductors than for insulators, as had been found for pseudopotentials. The locations of dd-band states, determined using the full-potential EXX method, are in excellent agreement with experiment, irrespective of whether these states are core, semi-core or valence. We conclude that the inclusion of the core-valence interaction is necessary for accurate determination of EXX Kohn-Sham band structures, indicating a possible deficiency in pseudopotential calculations.Comment: 4 pages 2 fig

    Pressure-induced hole doping of the Hg-based cuprate superconductors

    Full text link
    We investigate the electronic structure and the hole content in the copper-oxygen planes of Hg based high Tc cuprates for one to four CuO2 layers and hydrostatic pressures up to 15 GPa. We find that with the pressure-induced additional number of holes of the order of 0.05e the density of states at the Fermi level changes approximately by a factor of 2. At the same time the saddle point is moved to the Fermi level accompanied by an enhanced k_z dispersion. This finding explains the pressure behavior of Tc and leads to the conclusion that the applicability of the van Hove scenario is restricted. By comparison with experiment, we estimate the coupling constant to be of the order of 1, ruling out the weak coupling limit.Comment: 4 pages, 4 figure

    Band-structure topologies of graphene: spin-orbit coupling effects from first principles

    Full text link
    The electronic band structure of graphene in the presence of spin-orbit coupling and transverse electric field is investigated from first principles using the linearized augmented plane-wave method. The spin-orbit coupling opens a gap at the K(K′)K(K')-point of the magnitude of 24 μ\mueV (0.28 K). This intrinsic splitting comes 96% from the usually neglected dd and higher orbitals. The electric field induces an additional (extrinsic) Bychkov-Rashba-type splitting of 10 μ\mueV (0.11 K) per V/nm, coming from the σ\sigma-π\pi mixing. A 'mini-ripple' configuration with every other atom is shifted out of the sheet by less than 1% differs little from the intrinsic case.Comment: 4 pages, 4 figure
    • …
    corecore